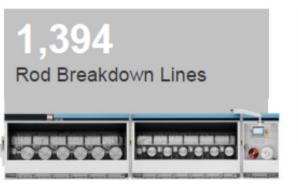


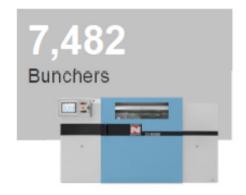
Sustainability in mechanical engineering and energy-efficient machines for the wire and cable industry

Stephan Gorgels

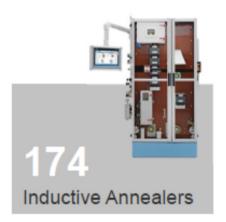
Maschinenfabrik NIEHOFF GmbH & Co. KG, Germany

Locations Worldwide





Core Products



Sustainable Manufacturing of NIEHOFF Machinery

- Geothermal cooling and heating system: 162 earth probes in a depth of 85 m combined with heat pumps.
- Niehoff energy requirements are covered from renewable sources by 100%.
- 60 70 % of the heat energy required in the Niehoff paint shop is saved by **recovering heat** from exhaust air.
- With 190 kWh/m²a, the primary energy requirement undercuts the standard value (347 kWh/m²a set by the German Energy Saving Ordinance EnEV 2009) significantly by 45%.

Sustainable Manufacturing of NIEHOFF Machinery

Certificates and Awards

Certified according to ISO 14001

ECOVADIS award

BLUE COMPETENCE

LUFTHANSA **Emission Mitigation** Certificate

- Environmental award by the State of Bavaria for close-tonature building design and high biodiversity
- Certified by the German Environmental Auditors Board EMAS
- **Blossom Pact Award** Bavaria
- Certified by the Federal Ministry for Economic Affairs and Climate Action "Initiative Energy **Efficiency and Environmental Protection Network**"

Sustainability in mechanical engineering and energy-efficient machines for the wire and cable industry

Sources for this presentation:

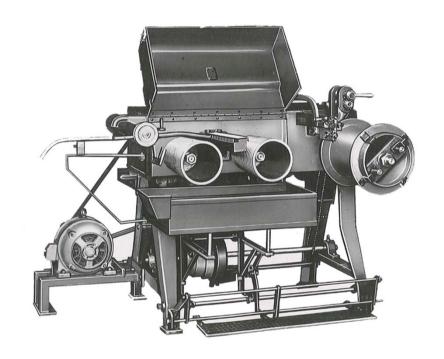
NIEHOFF: Operating instructions and internal documentation

Sustainability in mechanical engineering and energy-efficient machines for the wire and cable industry

Why buy new machines...

...when existing machines are economically depreciated but are still running technically flawlessy?

Does technical progress in the wire and cable industry really justify investment in new systems?



Milestones in the development of non-ferrous wire production over the last 60 years

- 1960s Tandem drawing machines replace cone machines
- 1970s Invention of inline annealing for non-ferrous wires
- Double spoolers and reels for continuous operation
- Electronic drive technology and control systems
- Process and machine condition monitoring
 Has development slowed down or has it even stopped?

Evolution of RBD machines

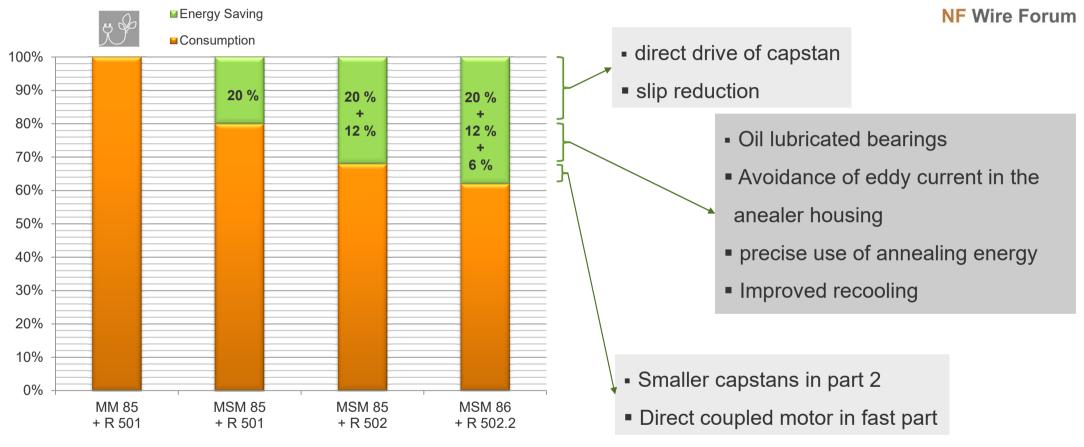
• 1962: M85 + VG 85

■ 1986: MM85 + R500

Evolution of RBD machines

• 1998: MSM85 + R501

2018: MSM86 + R502.2

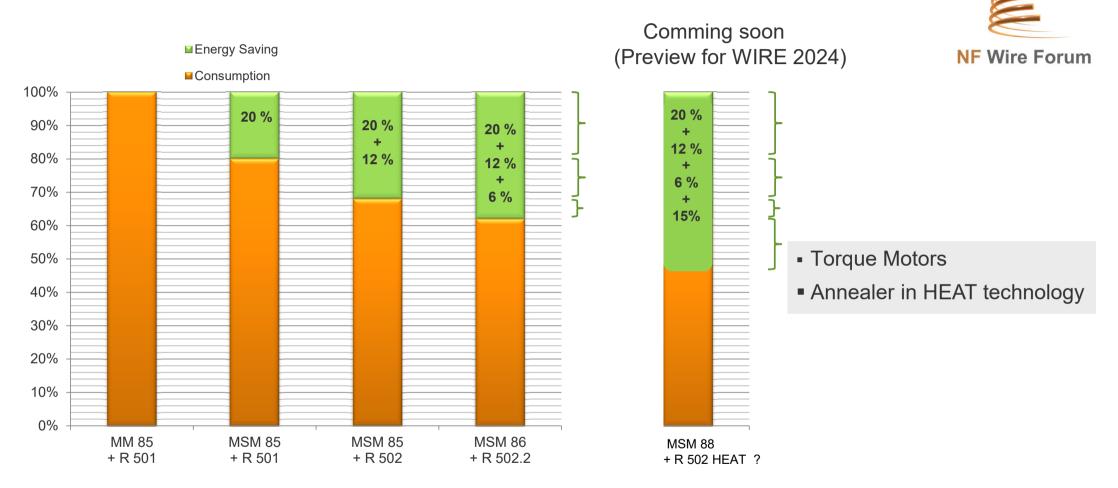


Energy savings with state-of-the-art machinery

Why buy new machines...

Was that all?

what happens next?



Energy savings with state-of-the-art machinery

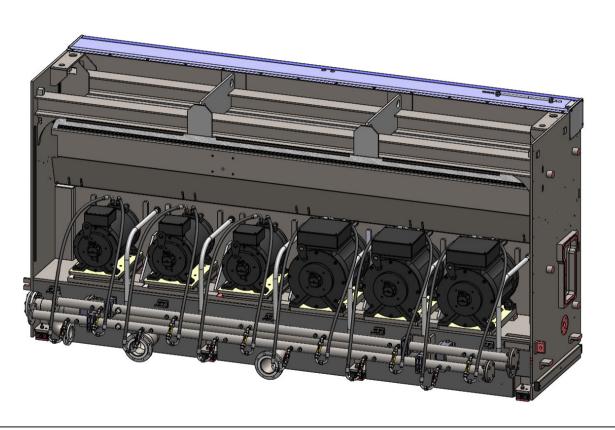
Sustainability in mechanical engineering and energy-efficient machines for the wire and cable industry

New Generation of RBD Lines – MSM 84 / 88 + R402 / R502

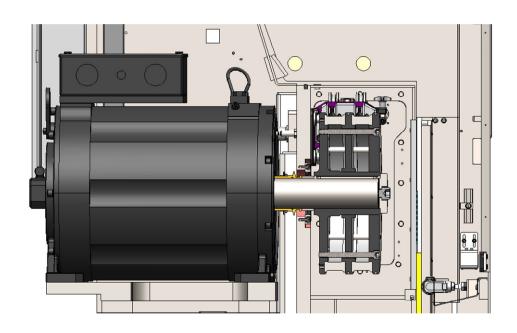
MSM 84 / 88 + R402 / R502 - Drivers for the New Development

- Sustainability: "Green" machine
- Energy savings
- Higher output
- Enhanced reliability / process stability

Torque Motors



Torque Motors



Torque Motors

Minimum maintenance costs

Excellent energy savings

Directly coupled torque motor

NF Wire Forum

Conventional Energy Efficiency

Material	Number of wires

Row 1	Cu-ETP	2
Row 2	Cu-ETP	2
Row 3	Cu-ETP	2
Row 4	Cu-ETP	2
Row 5	Cu-ETP	2
Row 6	Cu-ETP	2
Row 7	Cu-ETP	2
Row 8	Cu-ETP	2
Row 9	-	-
Row 10	-	-
Row 11	Cu-ETP	2
Row 12	Cu-ETP	2
Row 13	Cu-ETP	2
Row 14	Cu-ETP	2
Row 15	Cu-ETP	2
Row 16	Cu-ETP	2
Row 17	Cu-ETP	2
Row 18	Cu-ETP	2
Row 19	-	-
Row 20	Cu-ETP	1

Wirediameter Inlet	Wirediameter Outlet	v [m/s] drawing line
d _{in}	d _{out}	v
[mm]	[mm]	[m/s]

8,000	1,400	40,0
8,000	1,600	40,0
8,000	1,800	40,0
8,000	2,050	37,5
8,000	2,300	30.0
8,000	2,600	23,5
8,000	3,000	14,5
8,000	3,500	7,5
-	-	-
-	-	-
8,000	1,500	40,0
8,000	1,600	40,0
8,000	1,800	40,0
8,000	2,050	38,0
8,000	2,300	31,0
8,000	2,600	24,0
8,000	3,000	14,5
8,000	3,500	7,5
-	-	-
8,000	1,600	40,0

Density	Mass capacity
[kg/dm³]	[kg/h]

8,960	3975
8,960	5188
8,960	6567
8,960	7985
8,960	8041
8,960	8049
8,960	6612
8,960	4655
-	-
-	-
8,960	4560
8,960	5188
8,960	6567
8,960	8091
8,960	8309
8,960	8220
8,960	6612
8,960	4655
-	-
8,960	2594

Power Wire drawing	Splashing power drawing machine	Pump power drawing machine
P _{Draht}	P _{Plansch}	P _{Pump}
[kW]	[kW]	[kW]

19,4	8,0
19,4	8,0
19,4	8,0
18,2	8,0
144	8,0
11,4	8,0
7,0	8,0
3,6	8,0
-	-
-	-
19,4	8,0
19,4	8,0
19,4	8,0
18,5	8,0
15,1	8,0
11,7	8,0
7,0	8,0
3,6	8,0
-	-
19,4	8,0
	19,4 19,4 18,2 11,4 7,0 3,6 - 19,4 19,4 19,4 18,5 15,1 11,7 7,0 3,6 -

52 kWh/t

NF Wire Forum

Energy Efficiency MSM 88 with Torque Motors

Material	Number of wires

Row 1	Cu-ETP	2
Row 2	Cu-ETP	2
Row 3	Cu-ETP	2
Row 4	Cu-ETP	2
Row 5	Cu-ETP	2
Row 6	Cu-ETP	2
Row 7	Cu-ETP	2
Row 8	Cu-ETP	2
Row 9	-	-
Row 10	-	-
Row 11	Cu-ETP	2
Row 12	Cu-ETP	2
Row 13	Cu-ETP	2
Row 14	Cu-ETP	2
Row 15	Cu-ETP	2
Row 16	Cu-ETP	2
Row 17	Cu-ETP	2
Row 18	Cu-ETP	2
Row 19	-	-
Row 20	Cu-ETP	1

Wirediam eter Inlet	Wirediameter Outlet	v [m/s] drawing line
d _{in}	d _{out}	v
[mm]	[mm]	[m/s]

8,000	1,400	40,0
8,000	1,600	40,0
8,000	1,800	40,0
8,000	2,050	37,5
8,000	2 300	30.0
8,000	2,600	23,5
8,000	3,000	14,0
8,000	3,500	7,5
-	-	-
-	-	-
8,000	1,500	40,0
8,000	1,600	40,0
8,000	1,800	40,0
8,000	2,050	38,0
8,000	2,300	31,0
8,000	2,600	24,0
8,000	3,000	14,5
8,000	3,500	7,5
-	-	-
8,000	1,600	40,0

Density	Mass capacity
[kg/dm³]	[kg/h]

8,960	3975
8,960	5188
8,960	6567
8,960	7985
8,960	8041
8,960	8049
8,960	6612
8,960	4655
-	-
-	-
8,960	4560
8,960	5188
8,960	6567
8,960	8091
8,960	8309
8,960	8220
8,960	6612
8,960	4655
-	-
8,960	2594

Power Wire drawing	Splashing power drawing machine	Pump power drawing machine
P _{Draht}	P _{Plansch}	P _{Pump}
[kW]	[kW]	[kW]

327	19,4	8,0
388	19,4	8,0
446	19,4	8,0
504	18,2	8,0
7.55	14,6	8,0
401	11,4	8,0
201	7,0	8,0
162	3,6	8,0
-	-	-
-	-	-
362	19,4	8,0
400	19,4	8,0
461	19,4	8,0
510	18,5	8,0
469	15,1	8,0
409	11,7	8,0
280	7,0	8,0
162	3,6	8,0
-	-	-
194	19,4	8,0

50 kWh/t

High **E**fficiency **A**nnealing **T**echnology – HEAT – R502.H

NF Wire Forum

HEAT High Efficiency Annealing Technology

There is still a lot of potential in the Annealer!

NF Wire Forum

HEAT

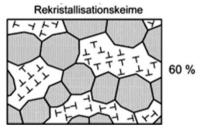
More information will be given at the "WIRE 2024" in Düsseldorf

New Generation of RBD Lines – MSM 84 / 88 + R402 / R502

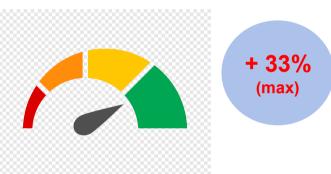
Customer Benefits – MSM88 + R502.H + 2 Spoolers Production Example: 2 x AWG10 with 4,724 ft/min

- 102 kWh/t instead of 119 kWh/t
- \triangle = 17 kWh/t

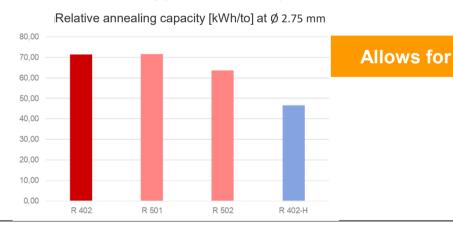
- Capacity: 8 to/h
- Production time 6,500 h/a, OEE 85% \rightarrow 44,000 t/a
- Energy costs 0.20 €/kWh
 - > 150,000 € less energy costs / year or
 - > 748,000 kWh savings / year equal to 300 t of CO2 savings / year



New Generation of RBD Lines – MSM 84 / 88 + R402 / R502


Annealing – USP / R502.H

Improved Recrystallization



NF Wire Forum

Better energy efficiency

Higher output

2,500 26,5	2,500 35,3	Diameter (mm) v max (m/s)
530 7400	530 7356	P (kW)
41,2 8347,5	41,6 11130,0	U (V) Production output [kg/h]

R502 R502.H

2023

Page 24

Enhanced Reliability / Process Stability

Results

- Less wire breaks in the annealer
- More stable process
- Less downtime
- Higher OEE

Thank you for your attention!

Maschinenfabrik NIEHOFF GmbH und Co. KG

Walter-Niehoff-Straße 2 91126 Schwabach Germany

Phone: +49 9122 977-0 Fax: +49 9122 977-155

info@niehoff.de www.niehoff.de

